Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 24, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468308

RESUMO

Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 µm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid ß (Aß), we infused locally Hi-Lyte Fluor 555-labeled Aß in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aß, and less Aß coverage at early time points after Aß injection. To test whether P2RY12 is involved in process movement in response to Aß, we treated acute brain slices with a P2RY12 antagonist before Aß injection; microglial processes no longer migrated towards Aß. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aß pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Genótipo , Camundongos Transgênicos , Microglia/metabolismo
2.
Front Neurosci ; 17: 1068334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845433

RESUMO

Introduction: Tamoxifen is a common treatment for estrogen receptor-positive breast cancer. While tamoxifen treatment is generally accepted as safe, there are concerns about adverse effects on cognition. Methods: We used a mouse model of chronic tamoxifen exposure to examine the effects of tamoxifen on the brain. Female C57/BL6 mice were exposed to tamoxifen or vehicle control for six weeks; brains of 15 mice were analyzed for tamoxifen levels and transcriptomic changes, and an additional 32 mice were analyzed through a battery of behavioral tests. Results: Tamoxifen and its metabolite 4-OH-tamoxifen were found at higher levels in the brain than in the plasma, demonstrating the facile entry of tamoxifen into the CNS. Behaviorally, tamoxifen-exposed mice showed no impairment in assays related to general health, exploration, motor function, sensorimotor gating, and spatial learning. Tamoxifen-treated mice showed a significantly increased freezing response in a fear conditioning paradigm, but no effects on anxiety measures in the absence of stressors. RNA sequencing analysis of whole hippocampi showed tamoxifen-induced reductions in gene pathways related to microtubule function, synapse regulation, and neurogenesis. Discussion: These findings of the effects of tamoxifen exposure on fear conditioning and on gene expression related to neuronal connectivity suggest that there may be CNS side effects of this common breast cancer treatment.

3.
J Neurochem ; 163(3): 247-259, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35838553

RESUMO

APOE is an immunomodulator in the brain and the major genetic risk factor for late-onset Alzheimer's disease (AD). Targeted replacement APOE mice (APOE-TR) have been a useful tool to study the effects of APOE isoforms on brain neurochemistry and activity prior to and during AD. We use newly available APOE knock-in mice (JAX-APOE) to compare phenotypes associated with APOE4 across models. Similar to APOE4-TR mice, JAX-E4 mouse brains showed 27% lower levels of APOE protein compared with JAX-E3 (p < 0.001). We analyzed several neuroinflammatory molecules that have been associated with APOE genotype. SerpinA3 was much higher in APOE4-TR mice to APOE3-TR mice, but this effect was not seen in JAX-APOE mice. There were higher levels of IL-3 in JAX-E4 brains compared with JAX-E3, but other neuroinflammatory markers (IL6, TNFα) were not affected by APOE genotype. In terms of neuronal structure, basal dendritic spine density in the entorhinal cortex was 39% lower in JAX-E4 mice compared with JAX-E3 mice (p < 0.001), again similar to APOE-TR mice. One-week treatment with ibuprofen significantly increased dendritic spine density in the JAX-E4 mice, consistent with our previous finding in APOE-TR mice. Behaviorally, there was no effect of APOE genotype on Barnes Maze learning and memory in 6-month-old JAX-APOE mice. Overall, the experiments performed in JAX-APOE mice validated findings from APOE-TR mice, identifying particularly strong effects of APOE4 genotype on lower APOE protein levels and simplified neuron structure. These data demonstrate pathways that could promote susceptibility of APOE4 brains to AD pathological changes.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Animais , Camundongos , Apolipoproteína E4/metabolismo , Espinhas Dendríticas/metabolismo , Doenças Neuroinflamatórias , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Apolipoproteína E3/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
4.
Glia ; 69(6): 1478-1493, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33556209

RESUMO

Neuroinflammation is a common feature in neurodegenerative diseases, modulated by the Alzheimer's disease risk factor, apolipoprotein E (APOE). In the brain, apoE protein is synthesized by astrocytes and microglia. We examined primary cultures of astrocytes and microglia from human APOE (E2, E3, and E4) targeted-replacement mice. Astrocytes secreted two species of apoE, whereas cellular apoE consisted of only one. Both forms of secreted astrocytic apoE were bound during glycoprotein isolation, and enzymatic removal of glycans produced a convergence of the two forms of apoE to a single form; thus, the two species of astrocyte-secreted apoE are differentially glycosylated. Microglia released only a single species of apoE, while cellular apoE consisted of two forms; the secreted apoE and one of the two forms of cellular apoE were glycosylated. We treated the primary glia with either endogenous (TNFα) or exogenous (LPS) pro-inflammatory stimuli. While LPS had no effect on astrocytic apoE, APOE2, and APOE3 microglia increased release of apoE; APOE4 microglia showed no effect. APOE4 microglia showed higher baseline secretion of TNFα compared to APOE2 and APOE3 microglia. TNFα treatment reduced the secretion and cellular expression of apoE only in APOE4 astrocytes. The patterns of apoE species produced by astrocytes and microglia were not affected by inflammation. No changes in APOE mRNA were observed in astrocytes after both treatments. Together, our data demonstrate that astrocytes and microglia differentially express and secrete glycosylated forms of apoE and that APOE4 astrocytes and microglia are deficient in immunomodulation compared to APOE2 and APOE3.


Assuntos
Astrócitos , Animais , Apolipoproteína E2 , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Inflamação , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Microglia , Doenças Neuroinflamatórias , Isoformas de Proteínas , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...